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ADDENDUM 

Exact solution for the spatially homogeneous nonlinear Kac 
model of the Boltzmann equation with an external force term 

H Cornille 
Service de Physique Theorique, C E N  Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 29 February 1984 

Abstract. We study the spatially homogeneous Kac model of the nonlinear Boltzmann 
equation in 1 + 1 dimensions (velocity U and time r )  when an external force term is present. 
We find a closed solution. The force term decreases exponentially with time, like constant, 
exp - constantz x r,  where both constants depend explicitly on the moments of the cross 
section. We find, for the relaxation to equilibrium, that the Tjon overpopulation effect 
depends on both the initial condition and the microscopic model of cross section. For the 
existence of this effect, we establish a criterion which is a well defined linear combination 
of the moments of the cross section. 

The full Kac model (Kac 1956, Uhlenbeck and Ford 1963), which is a nonlinear 
Boltzmann equation, depends on the three variables U, t, x (velocity U ,  time t ,  
position x) and the distribution function f( U ,  t ,  x) satisfies the equation 

+n +X 

(d,+vd, +A([, x)d,)f(u)= I, a(0) I, (f(U'lf(W') - f ( U l f ( W ) )  dw d e ,  

(1) 
U' = v cos 0 - w sin 0, w' = U sin 8 + w cos 0, a(e) = a(-e),  

where f(u) means f ( v ,  t, x) and a(0) is the scattering cross section. If the gradient 
term vd, is not present f = f ( u ,  t )  is the spatially homogeneous solution with the force 
term A = A([). When this force term is absent, we have recently found (Cornille 
1984a) a solution in closed form 

in (2) 
r, = I (cos O ) " a ( O )  do, T o =  1, c2 = r2 - r4, a2 - 7 ,  + 7 3  = 0, 

-7 

where the even velocity part f ' (u ,  t )  is the B K W  even mode (Bobylev 1975, Krook and 
Wu 1976). This even mode has been obtained by Ernst (1979, 1980, 1981) for the Kac 
model and the odd velocity part f ( u ,  t )  in (2) (f=f' +f) is an associated nontrivial 
odd mode. 

For this complete B K W  solution ( 2 ) ,  very interesting new results were obtained for 
the overpopulation Tjon (1979) effect of high velocity particles' relaxation to equili- 
brium. Define a phenomenological criterion 

crit, = 7 , , - 2 a 2 - 7 ,  (3) 
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as a linear combination of a(0) moments. Roughly speaking, the Tjon effect exists 
(or not) depending on whether crit, is negative (or not). If further, still for the spatially 
homogeneous Kac model without external force, we investigate the general odd 
solutions associated to the B K W  even mode, then this criterion is still a good tool in 
the study of the Tjon effect (Cornille 1984a, b). 

The aim of this paper is to introduce an external force term A( t ) d ,  into the spatially 
homogeneous Kac model and try to find, if it exists, the generalisation of the closed 
solution ( 2 )  and investigate the Tjon effect for this enlarged model. 

Different methods exist for the search for closed solutions. One can either try thz 
direct substitution of an appropriate ansatz or study the differential system for the 
Laguerre moments of f(u, t ) .  Kac's equations for f(u, t )  are 

d,f'+A(t)a,f = [-: a(0) [ + m ( f + ( u ' ,  --cc 

a,f +A(t)a,f'= [-: a(@) [ + - ( f ( u r ,  t)f'(w', t ) - f ( u ,  t)f'(w, t ) )  dw de. 

t)f+(w', t ) - f + ( u ,  t)f'(w, t))dw de, ( 4 a )  

(46 )  
-02 

In the first method, assuming 

and substituting into ( 4 4  b ) ,  we find both that the only possibility is n ,  = 1, n -  = 0 and 
these equations become u2"', u2"'+' polynomials such that the time dependent 
coefficients are zero. In (4a )  let us write down the coefficient of u4 and, for a reason 
which will become transparent below, the sums of the coefficients of u 2 / 2 ,  2bu0 and 
3u2/4,  buo: 

The last two relations in (5a)  correspond to conserved quantities. If in ( 4 a )  we multiply 
by the invariants 1,  u2 and integrate over U, then, as is well known, the collision term 
contributions vanish. We find j z z f d v  =constant, setting this constant equal to 1 in 
the second (5a) relation and d, j:: v2f' du = 2A j:: uf du written down in the last 
(5a )  relation. In (4b )  we find two terms proportional to U and u 3 .  Taking into account 
( 5 a )  for the corresponding coefficients, we choose_ the u3 rdation and another one 
which is the difference of the coefficients of u/J2,  - $ ( u / J ~ ) ~  that we can directly 
integrate. We find 

where T F  = -I U( e)( 1 - cos e)( 1 +cos e - cos3 e) d e  > 0, A = -I a( 0) COS (1 -COS e)' x 
(1 +cos 0) d0 has no definite sign and d is an arbitrary constant. In order to determine 
b ( t )  we substitute the relations ( 5 b )  into ( 5 a )  and obtain a non-homogeneous second- 
order differential equation a,(a;'d,b-'  + b - ' )  = d2AF e-2rrF. The integration gives us two 
supplementary arbitrary parameters b-l = co - c e-'zr + c1 e-'"F where c, depends on 
both d and the moments of (+(e) and c,, = 1 if we requiref(u, 00) = exp(-u2/2). Finally 
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our closed (spatially homogeneous with external force term) solution reads 

U2d2h~ dAF - - ~ ~ i  

b-' = 1 - c e-'21 + cF e-2rF' CF = 9 A=-e , 
J 2  2 7 4 2 7 ~ -  (T2) 

AF, rF>0,  being defined in (5b), c and d being arbitrary constants, 27F-u2= 
5 a( e ) (  1 -COS 0)2(2 +4 cos e + 3  cos2 6 )  > 0 and b-' = 1 - ce-'2' for t large. 

Let us compare the two exact solutions (2) and (6) when an external force is present. 
If A F  = a2 - T~ + T~ = 0, then the force term disappears and (6) reduces to the complete 
BKW solution (2). When A F  # 0, the solution (6) can be seen as a generalisation of the 
BKW solution with an external force present. We notice that the even part f'(u,  t )  in 
(6) is different from the corresponding BKW even mode in (2) because it has in the 
square brackets a supplementary factor i b  e-2TF'd2AF/2~F proportional to d, the integra- 
tion constant of the odd part f ( v ,  l ) .  At t = 0 in (6), due to the presence of AF,  TF, cF 
in f(u, 0), the initial conditions depend not only on c, Id1 but also on the moments of 
a(@). On the contrary, in (2), only c, Id I enter into f ( u ,  0). Another important difference 
exists if we assume a(6) = u(r - e )  leading to T~,,,+' = 0. In (2), the condition u2 - T~ + 
T~ = 0 becomes a2 = 0 which is impossible for a(@ > 0 and the solution does not exist. 
On the contrary in (6) this symmetry a( e )  = a ( ~  - e )  leads to A F  = a2, T F  = T~ - w2 and 
the solution still exists but f ( v ,  t )  is not a trivial solution as it is the case when the 
external force is absent. 

Let us now discuss the positivity constraint f(u, 0) > 0 at t = 0. We must have 
b(0) > 0, ado)  > 0, ( ~ ~ ( 0 )  > 0 or 

a;'27FCF< c<inf( l  +CF,3+3CF[(a2+TF)/U2]), (7) 

and the discriminant of the second-order polynomial in u in the square brackets of 
(6) must be negative: 

d 2  +[2/( 1 - C + cF)](2-3c + C F [ ( U ~  + TF)/a2])(-c + ~ T F C F / ( + ~ )  < 0. (8) 

We explicitly see that these constraints depend on both c, Id1 and the moments of a(0). 
This means that we must introduce models for u(e) into the discussion, and for 
simplicity we choose the simplest one 

U( e )  = i( 6 ( e  - e,)  + a( e + e J), O < ~ C O S  e , ) <  1 .  (9) 
The positivity of f ( u ,  0) is satisfied in a domain of the c, Id/, cos 8 ,  space. In figure 1 
we plot the region of the c, Id1 plane where for a(e) given by (9) we have found cos 8 ,  
values (not necessarily all cos values) such that f ( u ,  O)> 0. The broken line in 
figure 1 corresponds to Id 12(1 - c) = 2 4 2  - 3c) where f ( u ,  0) > 0 for the solution (2). (In 
that (2) case, the domain does not explicitly depend on a(@) although for instance for 
a(@) given by (9) no solution exists.) 

Another method in the search for closed solutions of the Boltzmann equation is 
the study of the Laguerre expansion. For the spatially homogeneous Kac model, 
without external force, Kac (1956) and Ernst (1980) have obtained the equations for 
the Hermite moments. The equations for the Laguerre moments with the gradient term 
ua, were recently given (Cornille 1984a, b). Here we add the force term A(x,  t )  af/au 
and take great advantage of the relations for the Laguerre polynomials (1  - 2 y  + 
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Positivity domain a t  f = O  
I 

0 0 2  0 4  0 6  
c 

Figure 1. Id/ ,  c region wheref(u, 0 )>  0 for ( 6 )  and m(0) given by (9). Broken line: positivity 
domain for (2). 

substitute into ( I )  and formally find for the Laguerre moments 

In the following we return to the spatially homogeneous case f ( u ,  t )  with A = A ( t ) .  
The reader qan verify that the system (1 1 a, b) for the Laguerre moments has the solution 
A( t )  = ( d / J 2 ) A F  and 

D , ' = ( - l ) " [ w " ( l  - n ) + n w " - '  e-2'~'d2hF/27F],  D; = ( - l ) " w " d  e-TF', 
(6') w = c e-">' - cF e-*rF'. 

With the help of the generating functionals for the Li"' and some trivial algebra, the 
substitution of (6') into (10) leads to the solution (6). 

Now we discuss the Tjon overpopulation effect for the exact solution (6). We define 
the reduced distribution function F(u,  t )  =f(u, t ) / f ( u ,  CO) and study the relaxation to 
equilibrium F + 1 for t + CO and velocities larger in modulus than the one present at 
t = 0. Either F + 1 in a monotonic way from below (no effect) o r  there exists high 
velocity for which, at  intermediate times, F is substantially larger than 1 (effect). 

Let us discuss numerical results obtained with the simple model for a(0) given by 
(9). Setting in figure 2 c = 0.5, d = -0.775, cos 8, = 0.9, we see the Tjon effect; f(u, 0) 
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i\ -25  1 5 t  

V 

Figure 2. ( a )  Plot of F(u, t )  against U for c = 0.5, d = -0.775, cos 0 ,  = 0.9 in (9). crit = 

-0.19. ( b )  as ( a )  but plot of F(u, t )  against f .  

has a narrow peak, the last zero of F - 1 moves toward --CO when t increases and the 
values where F > 1 are important. In figure 3 for c = 0.5, d = -0.9, cos 8 ,  = 0.5, f ( u ,  0) 
has still a narrow peak, the last zero of F -  1 does not move when t increases and 
there is no effect. In figure 4 for c = 0.5, d = -0.07, cos O1 = 0.9, f ( v ,  0) has two wide 
bumps, the zero of F - 1 is moving but the values where F > 1 are very close to 1 and 
we conclude that the effect does not exist. These examples are generic of classes of 
solutions. Let us choose for c, Id1 values such that f ( u ,  0) has a narrow peak (or not) 
and let cos 13, vary between -1 and + l .  Concerning the last zero of F - 1 we observe 
a transition: for cos 0, < 0.6 this zero does not move, for 0.7 <cos el  < 0.93 it moves 
and for cos 8 ,  <0.95 the displacement of the zero disappears. If we have a narrow 
peak (or not) at t = 0 then we observe the Tjon effect like in figure 2 (or not, like in 
figure 4) for 0.7 < cos 8 ,  < 0.93 and no effect like in figure 3 for cos 8 ,  outside this interval. 

Secondly, we discuss the effect in a semi-theoretical way, extending the Hauge and 
Praestgaard (1981) arguments for even velocity distribution alone. Let us retain for 
the solution (9) or (10)-(9') the contribution coming from the first even and odd Laguerre 
moments and replace LEi"(u2/2) by their dominant parts when / U /  is large. If we write 
F - 1 = IuI e-'F'[ ] then the bracket has four terms. The first one, coming from Do is 
a constant, the second and the third, from 07, are of the type lul"*')'' multiplied 

V 

Figure 3. As figure 2 ( a )  but d = -0.9, cos 0, =0.5, crit =0.31. 
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V 

Figure 4. As figure 2 ( a )  but d = -0.07, crit = -0.19. 

by e-'F', exponential time decreasing terms, and the last one coming from 0: 
has a time dependence which increases or decreases following the a(@) model. We 
shall compare the first and the last term and define a criterion: 

F -  1 = IuI e-TFf[d s g n ( u ) / h - $ ( ~ 1 ~ ~ ~  ecritxf], crit = T~ - 2u2, 
r 

crit=.ro-3a,-T3= a(e) ( l -Z)( l+Z-2Z2-3Z3)dB,  z = COS e, J 
which has no definite sign. From (12) if crit > 0 then for t and /uI large, F < 1 and the 
Tjon effect does not exist. On the contrary if for a( e) models we have crit < 0 then, 
for IuI large, the bracket in (12) has a zero moving and the effect can exist. In order 
to test this criterion let us return to the family of cross sections a(@) given by (9). In 
this case crit = (1 - Z,)( 1 + Z, - 22: - 32:), Z, = cos e,, becomes negative for Z, > 0.65 
and we have numerically verified (see the above discussion) that the displacement of 
the zero occurs near this value. Some remarks are in order. First, this criterion, which 
only depends on a(e), is concerned with the displacement of the zero, while the 
existence of the effect requires also particular initial conditions (existence or not of a 
narrow peak). Second, a finer analysis must also include the contribution coming from 
the Laguerre moments 0: which were neglected (for instance when crit < 0 is large in 
modulus, the four terms of the bracket have all exponential time decreasing factors, 
requiring an analysis outside the scope of this paper). Third if u2 = T ,  - T~ > 0, the two 
solutions (2), (6) as well as the two criteria (3), (12) coincide, showing that (6) is indeed 
the generalisation of (2) for those (+(e) # a ( ~  - 0) for which T~,,,+, are different from 
zero. 

We recall that for the determination of the solution (6) we never needed the 
assumption a(0) # a(v - e). On the contrary, when the external force term is absent 
and for the non-trivial odd part f ( u ,  t )  then this constraint was essential (Cornille 
1984a, b). 

Here, the exact solution (6) still exists if we assume the special symmetry a(@) = 
O ( T - 6 )  or ~~,,,+,=0. In that case we have in (6), A F = a 2 ,  T F = T ~ - U ~  and in (12), 
crit = T~ - 3a2. For instance, the simplest case is the isotropic one a(e) = (27r-l for 
which crit = 0.625 > 0. In figure 5 we plot the solution for c = 0.5, d = -0.8 and we see 
that, in accordance with our criterion, no Tjon effect exists. 

We can intuitively understand the displacement of the zero in F -  1 with simple 
arguments. When both t and IuI become large, the dominant terms in the odd and 
even parts have both different asymptotic velocity behaviours U, 1uI4 or IuI (sgn U, lu31) 
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and different relaxation times 7;' and (2uJ'. If the difference between these two 
relaxation times, which is proportional to crit = T~ - 2cr2, is positive then F - 1 has the 
sign of the even part (negative here for (6)), whereas if it is positive, then when 1 0 1  
and t increase, there always exist values for which even and odd parts are comparable 
and vanish. 

It remains in the future to select those of the properties, found here for the closed 
solution (6), which are general and for that purpose to study the system of equations 
for the Laguerre moments, written down in (1 1 a, b) .  
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